
LA-UR-21-31104
Approved for public release; distribution is unlimited.

Title: Creating an MPAS Ocean Shallow Water Core in Julia

Author(s): Petersen, Mark Roger
Strauss, Robert Russell
Bishnu, Siddhartha

Intended for: LANL internal presentation

Issued: 2021-11-06

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National
Nuclear Security Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher
recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution,
or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as
work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom
and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its
technical correctness.

Creating an MPAS Ocean
Shallow Water Core in Julia

Robert Strauss, Sid Bishnu, Mark Petersen
LANL Center for Nonlinear Studies

Los Alamos High School

Why Julia?

Tradeoff between execution speed and development speed:

● Development languages (e.g. Python) are easy, but slow

● Production languages (e.g. C) are hard, but fast

Julia aims to be the best of both. Was first released in 2012

I created an MPAS model in Julia to test its potential for scientific HPC.

Other Shallow Water and Ocean Models in Julia

● Klima (MIT)
● Oceananigans (MIT)
● ShallowWaters.jl (Milan K, University of Oxford)

All use a regular rectilinear mesh.

I use an unstructured TRiSK mesh in Julia, which is novel.

Equation Set & Discretization

The Shallow Water Equations

2 prognostic fields:

η - sea surface height

u&v - average water column
group velocity

Primal & Dual Mesh (TRiSK)
● Julia version uses TRiSK discrete operators

η defined at cell centers

Normal velocity at edges

(+ Vertical layers)

Julia single-core CPU implementation

(included but not shown in snippet)

● Using a standard MPAS planar-hex mesh

● Variable names are identical to MPAS

● Code structure is similar to MPAS

Julia GPU version

The same gravity term
calculation, but written as
a GPU kernel

CUDA runs our kernel function
for every edge/cell each on its
own thread

CUDA getting index from thread
replaces for loop, otherwise
identical

Julia MPI (multi-core CPU) version
● MPI libraries are available for Julia

● Implemented domain decomposition and halo updates, like in MPAS

Time stepping

MPI
Communication
for Halo update

Unit Tests of TRiSK Discrete Operators

● Gradient, Divergence, Curl, Flux Mapping (primal
to dual)

● GPU and CPU versions produce nearly identical
results

Exact solution test cases & Convergence (CPU & GPU)
Kelvin wave Inertia-gravity wave

Time horizon: 25000

Close to second-order convergence
between numerical and exact
solution

La
tit

ud
e

(1
e6

 m
)

Longitude (1e6 m)

SSH (m)

● Verification against exact solutions for two test cases

● Julia can produce visualization like python (pull in
python libraries)

CPU versus GPU performance comparison

Julia-CPU: 22.9ms per timestep

Julia-GPU: 0.04ms per timestep

500x faster on the GPU!

● Tested on personal NVIDIA GTX 1080 GPU
○ 2560 NVIDIA CUDA Cores
○ one GPU thread per MPAS edge

● Test domain is 100x100 cells.
● Timing with Benchmarks.jl package 20 Streaming multiprocessors,

2048 threads per streaming multiprocessor

40x times faster than Python-CPU version
 (using MPAS-Python code from Sid Bishnu)

Comparison of Julia-MPI to Fortran-MPI on CPUs

● We are currently benchmarking Julia and Fortran MPAS on supercomputers.

● Our early rough benchmarks put Fortran strongly in the lead, almost 70x

faster than Julia

● However, the Fortran MPAS Ocean has been highly optimized, and we just

started optimizing Julia-MPI MPAS, like core-count to thread-count.

● These are also early results, nonlinear scaling may effect this as we test with

higher resolutions and add to the Julia code.

○ Similar projects have found comparable speeds between Julia-MPI and Fortran or C with MPI

Conclusion

● Julia was fast to develop
○ 3 months for MPAS shallow water Julia CPU, GPU, and multi-core versions

● Easy to switch from from CPU to GPU version
○ Drop in CUDA lines instead of for loop, add kernel wrapper

● Julia does require some time to learn - not quite as easy as Python
○ Julia has dynamic typing like python
○ Can create prototypes very fast with this feature
○ For performance, we end up typing everything anyway

● Julia delivers excellent performance
○ 40x faster than Python on single CPU
○ 500x speed-up from CPU to GPU
○ In current testing, Fortran-MPI is much faster (70x) than Julia-MPI, but this is preliminary

● This project shows that julia could be useful for computational physics, and
deserves further investigation.

